Exercise 31

Prove the statement using the ε , δ definition of a limit.

$$\lim_{x \to -2} (x^2 - 1) = 3$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

if
$$0 < |x - (-2)| < \delta$$
 then $|(x^2 - 1) - 3| < \varepsilon$

for all positive ε . Start by working backwards, looking for a number δ that's greater than |x+2|.

$$|(x^{2} - 1) - 3| < \varepsilon$$
$$|x^{2} - 4| < \varepsilon$$
$$|(x - 2)(x + 2)| < \varepsilon$$
$$|x - 2||x + 2| < \varepsilon$$

On an interval centered at x = -2, a positive constant C can be chosen so that |x - 2| < C.

$$C|x+2| < \varepsilon$$
$$|x+2| < \frac{\varepsilon}{C}$$

To determine C, suppose that x is within a distance a from -2.

|x+2| < a-a < x+2 < a-a-4 < x-2 < a-4|x-2| < |-a-4| = a+4

The constant C is then a + 4. Choose δ to be whichever is smaller between a and $\varepsilon/(a + 4)$: $\delta = \min\{a, \varepsilon/(a + 4)\}$. Now, assuming that $|x + 2| < \delta$,

$$|(x^{2} - 1) - 3| = |x^{2} - 4|$$

= $|(x - 2)(x + 2)|$
= $|x - 2||x + 2|$
< $(a + 4)\left(\frac{\varepsilon}{a + 4}\right) = \varepsilon.$

Therefore, by the precise definition of a limit,

$$\lim_{x \to -2} (x^2 - 1) = 3.$$

www.stemjock.com