Exercise 31

Prove the statement using the ε, δ definition of a limit.

$$
\lim _{x \rightarrow-2}\left(x^{2}-1\right)=3
$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } 0<|x-(-2)|<\delta \quad \text { then } \quad\left|\left(x^{2}-1\right)-3\right|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x+2|$.

$$
\begin{gathered}
\left|\left(x^{2}-1\right)-3\right|<\varepsilon \\
\left|x^{2}-4\right|<\varepsilon \\
|(x-2)(x+2)|<\varepsilon \\
|x-2||x+2|<\varepsilon
\end{gathered}
$$

On an interval centered at $x=-2$, a positive constant C can be chosen so that $|x-2|<C$.

$$
\begin{aligned}
& C|x+2|<\varepsilon \\
& |x+2|<\frac{\varepsilon}{C}
\end{aligned}
$$

To determine C, suppose that x is within a distance a from -2 .

$$
\begin{gathered}
|x+2|<a \\
-a<x+2<a \\
-a-4<x-2<a-4 \\
|x-2|<|-a-4|=a+4
\end{gathered}
$$

The constant C is then $a+4$. Choose δ to be whichever is smaller between a and $\varepsilon /(a+4)$: $\delta=\min \{a, \varepsilon /(a+4)\}$. Now, assuming that $|x+2|<\delta$,

$$
\begin{aligned}
\left|\left(x^{2}-1\right)-3\right| & =\left|x^{2}-4\right| \\
& =|(x-2)(x+2)| \\
& =|x-2||x+2| \\
& <(a+4)\left(\frac{\varepsilon}{a+4}\right)=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow-2}\left(x^{2}-1\right)=3
$$

